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APPROXIMATIM CONDITIONAL MOMENTS OF THE MULTIVARIATE

NORMAL DISTRIBUTION

By

Joseph G. Deken

ABSTRACT

A practical method for computing the conditional expectation of a

polynomial in the components of a multivariate normal random variable

XP when X is restricted to a subset of 3P, is given. This method

makes the application of certain missing data techniques possible in

cases where repeated numerical integration is not feasible.
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APPROXIMATING CCBDITIONAL METS OF THE MULTIVARIATE

NORMAL DISTRIBUTION

BY

Joseph G. Deken

1. Introduction.

The conditional moments such as E(Xk) of a multivariate normal random

variable X = (X,X2,...,Xp ), when X is restricted to a subset

A c RP, are not readily obtained numerically, since the required

integration in p-dimensions is time-consuming except for very small

p. These conditional moments are of interest, for example in the

derivation of E-M estimates in missing data problems (Dempster, L&4rd

and Rubin, 1977). We present here an efficient approximation scheme for these

moments, which makes the computation practical for moderately large p.

For convenience of description, we restrict attention to sets

A of the form I, X 12 X ... X Ip* where all the Ij are intervals,

but the approach is more general, as indicated below. We start by

observing that the approximations to the ratio

2
s+t x 2a.2

x e dx

3-t
sEt 2

• dx

obtained by the first terms in a Taylor series around t = 0 may be

written as polynomials in p:
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The conditional expectation of a polynomial P(X) =a 0 +a1 X+a 2]?+..+& nain

in the normal random variable X is thus approximated by replacing P

by a polynomial Q(V) in the mean of X., where the transformation

T(B,t,a 2 P 4Qis linear. Since the transformation V: c - b defined

by

m
E cC,(g hX) m b~Xll

is also linear,. and the conditional mean of Xpgiven J...,*X P 1  is

of the form (g-bX P1) where g is linear in X,1,..-.,X _2,o azW approxi-

mnation to E k -which is a polynomial in the mean of X will produce a
p p

polynomial in (xi,.. .9x P 1) when Xpis conditional on X,-.X-.

The conditional expectation in MP~ may thus be accomplished in 2p

steps, by applying T and then V in succession p times, to obtain

E(- 1X1..X1-) m E(. X...X -) E(' IX1) OwEgaUp a=o

Computationally, this process requires 2p matrix multiplications and is

thus practical for moderate p.
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2. An Example.

The following simple example will serve to establish some ideas

and notation. Let

-x2

T ( 2 ,st ) = s:tfxke 2.
s-t

We are concerned with the conditional expectation Ik/I0  of Xk, where

X is a normal random variable. The sum of the first terms of a Talor

series for this ratio about t = 0 is of the form

q *2(1),~

but also may be represented by identifying the coefficients of in (1)

as

2

For example, (letting v = a-)

Ii/I0 s+ s)t 2 + 2v(s-") + (s-uY t+

222 3  22 4  2
.. 4 - 2 t 4 ,4 4

l5v3  45v3
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3. Multiple Integration.

If (XlX 2 ) are bivariate normal, the conditional distribution of

X2 , given X1, is tl (- 2. ). The approximation procedure

given above yields (writing E for the vector of coefficients of P, and with C

the matrix whose Jkth element is the coefficient of p in the approximation
of I/I ):

2
E(P(X2 )1X26(s2-t2,s2+t2 ),X1 ) - l(s2,t2, 2.1))(42+b2(Xl.,1)).

This last is of course a polynomial in XI , with coefficients

21 (Cs2,'t2, 0'2.1) P)IB (P2.b21l 1  ,
>2'

so that

E(P(X2 )1X2 E(s2 -t 2,s 2+t 2 ), XkE(s - t , s+t1 )) =

i 2:.. (C (sl , tl l )) (P)

Other cases (higher dimensions, mltivariate polynomials) are treated

similarly, but it will be best to introduce some notation at this point.

If p is a vector of coefficients, then

SUBB(a,b,p) is a vector of coefficients,

( UBS(a,bq )) : b j  k, () a k -j

k>J

(i.e. SUBS(a,b,p) is the vector of coefficients of yJ when

a+by is substituted for x in p(x)).
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With the aid of a symbolic computation system such as MIT' s MACSYMA,

the coefficients of the transformation

k  c a

as functions cW(vs,t) may be computed for much larger values of k

and a then would be practical by hand. (A partial table of values c 1

is given in ap endix A of this paper. Card versions consisting of FORTRAN

assignment statements " c (I,J) .... " may be obtained on request from

the author.) As subsequent examples show, the approximation of Xk  in
p

the box I 12 X -.. Ip involves cma for higher values of m than

k, depending on the order of the underlying Taylor series. Fortunately,

the approximation based on only a few terms is quite accurate, as evidenced

by the following example: Since the integral

S + t 2 2 - 2 " 2

/ xe dx=e 
- e

the Taylor series

io(l,Os,t) S(l - 2 + 22 t4

gives

-(3-t) 2 (s+t) 2
2 2I ol'O's't) = (s+t)",(s't)" N -. e 2 4 2

The approximate values obtained for 4(x) = .5 + *(x)-1)(0) by this

method agree with tabled values for four decimal ,)laces for 0 < x < 1.1.
5



INT(sjt,v,p) is a map from the scalars s,t,v and the vector p to the

vector pC(st,v), i.e. matrix postmultiplication, where we take

m
Ik/Io ~ E cj p as defining C.

We will also consider IN_ as a function, so that if INT = (a 0 ,al,...,am) ,

then (MN) (x) = ao+aX +.. + am x m

With the above notation, we can define multiple integrals in a fairly

compact fashion. The multivariate normal distribution may be parameterized

by a vector of means (plp 2 ,...,) , the conditional variances (V1 ,. .. ,V p )

defined by V1 = Var(X1 ), V. = Var(X lX1,...,Xj-l),j > 1, and the regression

coefficients b 21 b32Yb31 ,  bp,p_,... ,bpl defined by

j-1
E(Xi IX1 ... ,Xj) = 7. biiXii=l.

One-dimensional integration is done directly:

(p,sa,t , ,v) *- (InT(S' t'v,))).

Further integrals (12,13,...) in higher dimensions are defined recursively,

e.g. in two dimensions:

2( (l tl.s2. t2. 41. . VZ.v2.b 21.P )

(InT (sl I tlIVlISUMS ) P2-b2141 b 2lInT(s2,t2,v2,P.) ) ) I

and from this we obtain the two-dimensional integral as

.. (12 (s, tl, 2, t2, pl' p., vjv2,'b21'-p) ) (41)"

6



In general, IK = INT(...suBs(...I(I))). We have rcstricted attention

here to sets of the form 11 x 12 X .. Ip where the Ij are intervals.

For more general sets A, a similar scheme would work provided the

section of X 6 A given X1 -.. Xi_ is an interval with endpoints

ijhich are polynomials in X, ••.,Xji 1 .

f
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4. A Numeric Implementation.

The following example shows how the three-dimensional conditional

expectation approximation may be defined, using only vector and matrix

arithmetic with numeric arguments. The polynomial to be approximated

is presumed to be of degree at most two, and perhaps bivariate in X

and X . (This case is general enough for all the means, squares, and

products EX,EX2 ,... EX1 2 ,... EXlX2 ,... EX2 X ). In fact, we describe

here the approximate values of E(X), E(0), E(X 2 X3 ), since other

expectations reduce, by interchange of variables, to these three. The

approximation used will include powers of t up to t inclusive, i.e.

EXj  E cjC'(s't'v)P
a-O

The functions c may be found in appendix A).
3% _- j=l

To approximate E(X3 ), the integration on X3  is first carried out,

yielding

3a
C s v)p3pb -~ +Xlb +Xb )a

a o 1a3t' 1 3 31 232

3 ( a at-j3 ( b )7(
- cl(a(s 3 't 3 'v 3 ) E g ) (b3 1Xl ) (b3 2X2 ) ( 3 - 1 b31 -42b 32)

-

a=o 7o

3 53 e
The above expression is of the form r3 X3x-, where

E K r=o la I'-,



"a 31 5b 2 11vcls3t')31 2

Integration on X2then yields:

(; 3 'Lb +bi X )E 1 ( r cy(s2-t'v2) 21 21 1

6 CIA3 3-6 3 (
Es where s. Ej ~ r8 p Z b2a _-O 5(a -2)VO 0- =o-

and the final form is

*6 3 t
Ssa E cb,(x,,t,"lp

The approximation off is carried out in the same fashion:

a=o 0--o

aA3 3 -E 3a5

r? (ax )b8

(Note that the only change is the substitution of c 2y(s 3 t3' v5 ) for

c1 (st,))

9



To approximate X 2X 3, the first approximate integration is exactly

as in approximating X , but the resulting sum is

3 3.-a
r,

i.e. we have r~r(l~~1..,l-.A second integration gives

3 4-a3

(X-C apX1(: O' c( 2,t2,v2 )(P2-b2 l±1 +b2 lX1 ))

so the final result is

6 3

* where

C1 A3 4 - . _5(p p C

Higher Order Approximation, Higher Dimensions.

N a
In general, if EX E c ciapL is taken as the basic approximation,

cag0

the three-dimensional integral will be of the form

2W N

'where

S"' 'Cp S60 ay s12 .. Ip-1

10
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flius, increasing accuracy is computationally expensive, and increasing

dimension more so, but nonetheless the process should compare favorably

with numerical integration, as borne out by some preliminary comparisons,

where Romberg integration was about lOx slower.

Awl

I

(l
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Appendix A: Values of cj

Interval (s,-t,s+t)

k--O

22 2 22 2
S (t vw (y(2t (s w (s w 4 )+)-21s )-42)+315-945)

k~J.

tw (v(2ts w5s w+12)+)-s )-42+315)

k--2

stYv 5 (4t2 w (5s 2 w+6 )-6j5)

k=3

t 4V3 (it 2 w( 2 w+2)-21)
9145

2st 6w 5

k=5

2t 6w5
9i4 5

12



k=O

-(t 2(2w(t2(w(t2 (2s 2w(s 2w+5)+2)-1)-21s 2(s w+5))+21)+315s )-315)

-9458 2)/945

k=l

2 2 2 2 2 2
2st w(t w(w(2t (a w+3)(58 w+1)-63s )-84)+315)

945

k=2

2t 4w 2(w(2t 2(2s 2w(5s 2 w+)+l)-63s 2)-211
945

k=3

9415

k=5

4at 6 w5

13



k-O

a s(t2(v(t2(v(t2 (u w(2s w(s W+6)+5)-14 )-21s2(a w-4 ))

105)+.3158 )-315)-315B 2)/315

k~1

t wt (~t(a ~la wa +4)+)-12)-6 3s ( 2))+63)

+ 515s )/315

1f 2 2 2 2

t~w3 (t2 (48 v (5 s2w+6 )- -521s')
515

k=5

2a 2t 6w5
315

114



k=O

- (8a8 t6 wi? 56. 6 t6 w4_4-4% 6v3_84. 6tlY _1i22t6 w2

- 945. )/945

k=l

4at 2W(t 2(w(t 2(a 2W(28 2 w(5s 2w+e2 1 )-135)-5 14)

-21a 
2 (38 2 w+8))+169)+3158 2 )/915

4t 4 w2 (t 2 (a2 W(208 2 Ws2 3)2 -g s2 (a +S

945

k=3

4t 4 3(t(482W(5'32W+8 ).9)..213 2

945

k=4

k=5

8.33t 6w5
945



k=O

-8(2sBt 6w5+6 6 6 ,gw .. &'t 623 21 6 t 4w5-112s2t 6 w2

- 126s 4 t 4 w2 +6t6W42 +19 4t2w19 6o

- 18984 )/189

k=1

t W(106 t w +56t -6 4 t 4 2 _,6 t22 442t 4 w~

- 210s t 2w+27t 4+3788 2t 2 +315s 4)/189

k=2

!t 4w 2(2t 2(82V(2 2 w(5s 2w+18)-23)-18)-21B s 2 w+4))

k=3

21t4s 2 w+4)

k=5

16



k=O

.(4slht6w5+36 8t6w'36s6t6w3 -42s8t w3.430s t6w2

- 294s6tw2 +450s 2t6w+l70s' t4w+630s6t2w45t6.945s2t4

- 1575s 4t2 -315s6 )/15

k=l

2st 2 W(l88t4w4 6 4W3 -688,4 2-63 s6t 2w -300s 2t w

4 2 4 2 2 14252s t w+135t +6 30o t +315s )/315

k --2

k=3

i "~ 2sat w2 (2t2(2s w(s w+i5) (5s w.4)-i45 )-2182 (3s 2w+5) )/515

2s3t 3 (2t2 (2s2 Vw(52w+12)-15)-21s 2

315

k=4

4s4&~ 4 (s2 w+l)

k=5

. 4s5t6,w5

315

J1



k--O

- 8(2s t w5+2s t w 31s t w5 -2ls 8 tlw3_S66 4 t6 w2

- 168s 6 t4 w2 +5858 2 t6 w+10718 4 t 4 +186t2W15

- 94+58 t 4_9453 t 2-1358 6)/135

k=l

4 2 4 82t2 4
- 294s t w+405t +945. +315S )/315

k=2

354 22 2 2 2 2 2a t w (t (s w( 4 . v(58 w+24)-123)-180)- 6 3s (s w+2)

k=3

a 4 t1 w 4C3t 2 (482 W(58 2 v+14)-45 )-2182)
135

2a5 6 v4 (58 2 W+6)
- 135

k=5

2a 6 t 6 w5

'13,

418



k=-O

- a 2(16s. t w5+176s t 6 w -376s t w5 -168.8~w

- 4I592s 4t w -151-2s t W +10080. t w+11760s 4t 4 v

+ 2520S6 t2 w-378t 6 13230s 2t4-8820s4 t2- s V945

k=l

8s3t2v(10s tQ v 8s 1

-882s 2t 4V-336s 4t 2w+945t +1323s t 2 +3158 )/945

8s t 2 w v4 5sv2)-175 )-315 )-21s(3s2 v7) )/945

k=35

8s~tkw3 (t2 (482 w(522w+16)-63 )-2162

95

16 y v4(8w+7 )

k=5

19



- s3 (2s o 6 w5+214s~t 6w' -66s6t6 w3 -2ls8 t'w3 -848.s 6 v2

-206t4 w 2+2394s 2t 6 +1932s 4t 4w+3158 t 2w-1260t2

- 2646s 2 t 4126o0s 4t 2_105s 6 )/105

k~l

-37 t w+18go +16st+35 /0

kc=3

- s ~ t t(4 ( w(5 w+18-)-1)-21s(5 +)
105

k--4

287t 6 w1 4(s (5 2W+8)2)21)

k=5

2s 8 t6 .w5

20



- 84 Q1s10t6w5+52s 8 t 6 w 4 176s 6 t 6 32s 8 t 4 3254sIt 6 2

- 462s 6 t 2 +8316s 2 6 w+4914s 4 tw+63Os6 t2w-567Ot 6

24 4 2 6
-7958s t -28 35s t -189B )/189

k=l

2st t2 w(los8 t4 w 4 +96s 6 t4w3 286s4t 4 w2 -63 s6 t2wv2

-1944s t W-42os t w+3402t +2268s t +315s ')/189

k--2

2 6 4 2 2 2 2 2 2 2
2stw(2t (s W(2s v(5s W+33)-153)-378)-63s (s w±5))/189

k=3

2t4w3 (t 2(5s2w(s2w+4)_27)221s2)

k=4

k=5

21
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